Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

cis-3,3-Dimethyl-3,3a,4,5,6,6a-hexa-hydro- 1 H -cyclopenta[c]furan-1,6-dione

Wayne H. Pearson,* Stacey E. Lanham and Debra K. Dillner

Chemistry Department, United States Naval Academy, 572M Holloway Road, Annapolis, Maryland 21402, USA
Correspondence e-mail: wpearson@usna.edu

Received 29 May 2008; accepted 6 June 2008
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.038 ; w R$ factor $=0.108$; data-to-parameter ratio $=17.7$.

The bicyclic molecule of the title compound, $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{3}$, contains two five-membered rings with different functional groups, viz. a ketone and an ester. Both rings assume an envelope conformation. The mean planes of these functional groups form a dihedral angle of 60.7 (1) ${ }^{\circ}$. The crystal structure exhibits weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, which link the molecules into zigzag chains extended in the [010] direction. The unit cell contains a racemic mixture of enantiomers.

Related literature

For related literature, see: Boeckman et al. (1989); Wang et al. (2006); Rodriguez (1998); Corey \& Kang (1984).

Experimental

Crystal data
$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{3}$
$M_{r}=168.19$
Triclinic, $P \overline{1}$
$a=6.7333$ (7) Å
$b=8.2897$ (8) \AA
$c=8.5906$ (8) \AA
$\alpha=111.657$ (2) ${ }^{\circ}$
$\beta=103.571(2)^{\circ}$

Data collection

Bruker Kappa APEXII diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2007)
$T_{\text {min }}=0.934, T_{\text {max }}=0.988$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038 \quad 111$ parameters
$w R\left(F^{2}\right)=0.107$
H -atom parameters constrained
$S=1.06$
1961 reflections
$\gamma=92.809(2)^{\circ}$
$V=428.30$ (7) \AA^{3}
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=173$ (2) K
$0.33 \times 0.16 \times 0.13 \mathrm{~mm}$

9157 measured reflections 1961 independent reflections 1632 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.067$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O}^{\mathrm{i}}$	1.00	2.51	$3.3418(13)$	140
$\mathrm{C} 4-\mathrm{H} 4 B \cdots \mathrm{O}^{\mathrm{ii}}$	0.99	2.51	$3.4821(16)$	166

Symmetry codes: (i) $-x+2,-y,-z+1$; (ii) $-x+2,-y+1,-z+1$.
Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2; data reduction: $A P E X 2$; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Chemistry Department, United States Naval Academy, for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2418).

References

Boeckman, R. K. Jr, Arvanitis, A. \& Voss, M. E. (1989). J. Am. Chem. Soc. 111, 2737-2739.
Bruker (2007). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Corey, E. J. \& Kang, M. (1984). J. Am. Chem. Soc. 106, 5384-5385.
Rodriguez, A. D. (1998). Tetrahedron, 54, 11683-11729.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wang, S.-K., Huang, M.-J. \& Duh, C.-Y. (2006). J. Nat. Prod., 69, 1411-1416.

supplementary materials

Acta Cryst. (2008). E64, o1266 [doi:10.1107/S1600536808017133]
cis-3,3-Dimethyl-3,3a,4,5,6,6a-hexahydro-1H-cyclopenta[c]furan-1,6-dione

W. H. Pearson, S. E. Lanham and D. K. Dillner

Comment

Cyclopentane rings bearing multiple stereocenters are a common motif in terpenes, including ceroplastol (Boeckman et al., 1989) and dolabellanes. (Wang et al., 2006) Due to the wide variety of biological activities shown by these terpenes, interest in their synthesis is high. (Rodriguez, 1998) The bicyclic nature of the title compound makes it conformationally rigid. This rigidity is essential to its use as a stereochemical control element. Subsequent transformations require that one face of the molecule be more accessible than the other. For this reason, obtaining a crystal structure was an important goal.

The more accessible face of the molecule is oriented on the top side of figure 1 . The angle between least-squares planes defined by the ketone and ester functional groups is 60.7 (1) degrees. Bond distances in this compound are quite reasonable when compared with expected values. The carbon-carbon bonds average 1.528 (10) \AA in length. The two carbonyl bonds have an average length of 1.206 (2) \AA while the ring oxygen, O1, is positioned 1.344 (1) \AA from C1 and 1.488 (1) \AA from C2. Strain in the ring system is observed in the bond angles on opposite sides of the molecule. Angles on the carbonyl side of the compound are considerably less than the expected 120° for an $s p^{2}$ hybridized carbon. The angle defined by $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ is $107.93(9)^{\circ}$ while the $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$ angle is $110.06(8)^{\circ}$. On the opposite side of the ring system, the $\mathrm{C} 3-\mathrm{C} 7-\mathrm{C} 2$ angle is more open at $117.00(9)^{\circ}$ rather than the 109.5° that would expected around an $s p^{3}$ hybridized, central atom.

Experimental

As part of a synthetic effort to prepare natural products, the title compound was prepared in a manner similar to that described by Corey \& Kang (1984). Crystals were obtained by evaporation from ethanol.

Refinement

Although all of the H atoms were located in difference Fourier maps, H -atoms were placed and then constrained to be at idealized positions. Methyl H atoms were positioned at $0.98 \AA$, methylene H atoms at $0.99 \AA$, and methyne H atoms at 1.00 \AA from parent carbon atoms. A riding model was used during refinement. Methyl H atoms were allowed to rotate around the adjacent carbon-carbon bond with $U_{\text {iso }}(\mathrm{H})=1.5$ times $U_{\text {eq }}(\mathrm{C})$. Methylene H atoms were treated as idealized secondary H atoms with $U_{\text {iso }}(\mathrm{H})=1.2$ times $U_{\text {eq }}(\mathrm{C})$. Methyne H atoms were treated as idealized tertiary H atoms with $U_{\text {iso }}(\mathrm{H})=1.2$ times $U_{\text {eq }}(\mathrm{C})$.

supplementary materials

Figures

Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.

cis-3,3-Dimethyl-3,3a,4,5,6,6a-tetrahydro-1 H - cyclopenta[c]furan-1,6-dione

Crystal data
$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{3}$
$M_{r}=168.19$

Triclinic, $P \mathrm{~T}$

Hall symbol: -P 1
$a=6.7333$ (7) \AA
$b=8.2897(8) \AA$
$c=8.5906(8) \AA$
$\alpha=111.657(2)^{\circ}$
$\beta=103.571(2)^{\circ}$
$\gamma=92.809(2)^{\circ}$
$V=428.30(7) \AA^{3}$
$Z=2$
$F_{000}=180$
$D_{\mathrm{x}}=1.304 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{\mathrm{m}}=1.258 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation
Melting point $=355-357 \mathrm{~K}$
Mo Ka radiation
$\lambda=0.71073 \AA$
Cell parameters from 4358 reflections
$\theta=2.7-27.5^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Regular parallelepiped, colourless
$0.33 \times 0.16 \times 0.13 \mathrm{~mm}$

Data collection

Bruker KAPPA APEXII
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
Detector resolution: 512 pixels mm^{-1}
$T=173$ (2) K
combination of ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\text {min }}=0.934, T_{\text {max }}=0.988$
9157 measured reflections

1961 independent reflections
1632 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.067$
$\theta_{\text {max }}=27.5^{\circ}$
$\theta_{\min }=2.7^{\circ}$
$h=-8 \rightarrow 8$
$k=-10 \rightarrow 10$
$l=-11 \rightarrow 11$

Refinement

Refinement on F^{2}
Secondary atom site location: difference Fourier map

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.108$
$S=1.06$
1961 reflections
111 parameters
Primary atom site location: structure-invariant direct methods

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.057 P)^{2}+0.0541 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.34 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.16$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
C1	$1.03889(16)$	$0.18603(13)$	$0.76894(14)$	$0.0248(3)$
C2	$0.75616(16)$	$0.19250(14)$	$0.88370(14)$	$0.0252(3)$
C3	$0.67417(18)$	$0.39922(14)$	$0.71460(15)$	$0.0295(3)$
H3A	0.5373	0.4352	0.7209	0.035^{*}
H3B	0.7814	0.4840	0.8164	0.05^{*}
C4	$0.7176(2)$	$0.38907(16)$	$0.54419(17)$	$0.0347(3)$
H4A	0.5888	0.3489	0.4478	0.042^{*}
H4B	0.7811	0.5049	0.5563	0.042^{*}
C5	$0.86639(18)$	$0.25662(15)$	$0.51197(15)$	$0.0291(3)$
C6	$0.84742(15)$	$0.14672(13)$	$0.61779(13)$	$0.0219(2)$
H6	0.8134	0.0185	0.5424	0.026^{*}
C7	$0.67906(15)$	$0.21095(13)$	$0.70880(13)$	$0.0218(2)$
H7	0.5426	0.1354	0.6403	0.026^{*}
C8	$0.70323(19)$	$0.32707(17)$	$1.03822(15)$	$0.0340(3)$
H8A	0.7730	0.3122	1.1447	0.051^{*}
H8B	0.5534	0.3105	1.0213	0.051^{*}
H8C	0.7491	0.4455	1.0484	0.051^{*}
C9	$0.6960(2)$	$0.00625(16)$	$0.86661(18)$	$0.0367(3)$
H9A	0.7418	-0.0767	0.7715	0.055^{*}
H9B	0.5455	-0.0191	0.8417	0.055^{*}
H9C	0.7619	-0.0054	0.9757	0.055^{*}
O1	$0.98475(11)$	$0.22286(11)$	$0.91791(10)$	$0.0297(2)$

O2	$0.98035(16)$	$0.23863(12)$	$0.41910(13)$	$0.0442(3)$
O3	$1.21632(12)$	$0.18858(11)$	$0.76418(12)$	$0.0374(2)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0204(5)$	$0.0238(5)$	$0.0290(6)$	$0.0052(4)$	$0.0081(4)$	$0.0081(4)$
C2	$0.0191(5)$	$0.0320(6)$	$0.0262(6)$	$0.0068(4)$	$0.0083(4)$	$0.0115(4)$
C3	$0.0307(6)$	$0.0276(6)$	$0.0334(6)$	$0.0132(4)$	$0.0132(5)$	$0.0117(5)$
C4	$0.0396(7)$	$0.0349(6)$	$0.0399(7)$	$0.0161(5)$	$0.0172(6)$	$0.0211(5)$
C5	$0.0317(6)$	$0.0280(5)$	$0.0307(6)$	$0.0071(4)$	$0.0131(5)$	$0.0121(5)$
C6	$0.0199(5)$	$0.0204(5)$	$0.0250(5)$	$0.0046(4)$	$0.0088(4)$	$0.0067(4)$
C7	$0.0174(5)$	$0.0238(5)$	$0.0228(5)$	$0.0043(4)$	$0.0066(4)$	$0.0065(4)$
C8	$0.0314(6)$	$0.0449(7)$	$0.0243(6)$	$0.0107(5)$	$0.0112(5)$	$0.0091(5)$
C9	$0.0382(7)$	$0.0392(7)$	$0.0457(8)$	$0.0112(5)$	$0.0213(6)$	$0.0246(6)$
O1	$0.0198(4)$	$0.0411(5)$	$0.0271(4)$	$0.0078(3)$	$0.0051(3)$	$0.0124(4)$
O2	$0.0564(6)$	$0.0452(5)$	$0.0526(6)$	$0.0199(4)$	$0.0381(5)$	$0.0274(5)$
O3	$0.0182(4)$	$0.0444(5)$	$0.0440(5)$	$0.0058(3)$	$0.0102(4)$	$0.0097(4)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{O} 3$	$1.2043(13)$
$\mathrm{C} 1-\mathrm{O} 1$	$1.3437(13)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.5216(15)$
$\mathrm{C} 2-\mathrm{O} 1$	$1.4879(12)$
$\mathrm{C} 2-\mathrm{C} 8$	$1.5171(15)$
$\mathrm{C} 2-\mathrm{C} 9$	$1.5208(16)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.5367(16)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.5325(17)$
$\mathrm{C} 3-\mathrm{C} 7$	$1.5452(15)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9900
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9900
$\mathrm{C} 4-\mathrm{C} 5$	$1.5162(16)$
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9900
$\mathrm{O} 3-\mathrm{C} 1-\mathrm{O} 1$	$122.38(11)$
$\mathrm{O} 3-\mathrm{C} 1-\mathrm{C} 6$	$127.55(11)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$	$110.06(8)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 8$	$106.91(9)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 9$	$107.27(9)$
$\mathrm{C} 8-\mathrm{C} 2-\mathrm{C} 9$	$111.54(10)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 7$	$102.78(8)$
$\mathrm{C} 8-\mathrm{C} 2-\mathrm{C} 7$	$116.17(9)$
C9-C2-C7	$111.33(9)$
C4-C3-C7	$104.52(9)$
C4-C3-H3A	110.8
C7-C3-H3A	110.8
C4-C3-H3B	110.8
C7-C3-H3B	110.8

$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9900
$\mathrm{C} 5-\mathrm{O} 2$	$1.2076(14)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.5255(16)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.5322(13)$
$\mathrm{C} 6-\mathrm{H} 6$	1.0000
$\mathrm{C} 7-\mathrm{H} 7$	1.0000
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9800
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9800
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	0.9800
C9-H9A	0.9800
C9-H9B	0.9800
C9-H9C	0.9800
C1-C6-C7	$103.11(8)$
C5-C6-C7	$106.73(8)$
C1-C6-H6	111.5
C5-C6-H6	111.5
C7-C6-H6	111.5
C6-C7-C2	$103.16(8)$
C6-C7-C3	$103.53(8)$
C2-C7-C3	$117.00(9)$
C6-C7-H7	110.8
C2-C7-H7	110.8
C3-C7-H7	110.8
C2-C8-H8A	109.5
C2-C8-H8B	109.5
H8A-C8-H8B	109.5

sup-4

supplementary materials

$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	108.9
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$104.25(9)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	110.9
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	110.9
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	110.9
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	110.9
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	108.9
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 4$	$126.95(11)$
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 6$	$125.12(10)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$107.93(9)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$112.00(9)$
$\mathrm{C} 7-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-34.23(12)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 2$	$-160.31(13)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$19.95(13)$
$\mathrm{O} 3-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-50.89(15)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$127.96(9)$
$\mathrm{O} 3-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$-165.27(11)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$13.58(11)$
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$70.16(15)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-110.10(10)$
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-177.71(11)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$2.03(12)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$-27.21(10)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$-145.34(9)$
C1-C6-C7-C3	$95.19(9)$
C5-C6-C7-C3	$-22.94(11)$

$\mathrm{C} 2-\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	109.5
$\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	109.5
$\mathrm{H} 8 \mathrm{~B}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	109.5
C2-C9-H9A	109.5
C2-C9-H9B	109.5
H9A-C9-H9B	109.5
C2-C9-H9C	109.5
H9A-C9-H9C	109.5
H9B-C9-H9C	109.5
C1-O1-C2	$110.98(8)$
O1-C2-C7-C6	$30.96(9)$
C8-C2-C7-C6	$147.30(9)$
C9-C2-C7-C6	$-83.58(10)$
O1-C2-C7-C3	$-81.93(10)$
C8-C2-C7-C3	$34.42(13)$
C9-C2-C7-C3	$163.54(9)$
C4-C3-C7-C6	$35.35(11)$
C4-C3-C7-C2	$148.02(9)$
O3-C1-O1-C2	$-174.31(10)$
C6-C1-O1-C2	$6.77(11)$
C8-C2-O1-C1	$-146.96(10)$
C9-C2-O1-C1	$93.29(11)$
C7-C2-O1-C1	$-24.16(11)$
H6-C6-C7-H7	-26.1

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O}^{\mathrm{i}}$	1.00	2.51	$3.3418(13)$	140
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.99	2.51	$3.4821(16)$	166

Symmetry codes: (i) $-x+2,-y,-z+1$; (ii) $-x+2,-y+1,-z+1$.

supplementary materials

Fig. 1

